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IMPREGNATING A HEATED FILLER WITH A NON-NEWTONIAN
FLUID

L. Ya. Kosachevskii', E. A. Kosachevskaya, UDC 532.546
and L. S. Syui

An approximate parametric method is used to solve the planar temperature-depen-
dent problem of continuously impregnating a heated filler with a fluid that has
a power-law non-Newtonian viscosity.

Many composite materials are made by impregnating porous materials (fillers) with vari-
ous fluids (binders), which than are polymerized or crystallized into a solid. The most
convenient method to accelerate this process is to preheat the filler, which significantly
reduces the viscosity of the binder during the impregnation. Here the fluid is held at a
high temperature for only a short time, with no danger of thermal decomposition. An exact
self-similar solution has been obtained [1] to the problem of using an ordinary viscous
fluid for continuously impregnating a heated layer, which is drawn through a heated chamber.
Because binders used in practice (resins and polymer melts) have more complex rheological
properties, whose permeability differs from Darcy's law, the problem has been generalized
[2, 3] to viscoplastic binders. The permeability is described by a generalized Darcy's law
[4] for a linear temperature dependence of the rheological properties. An approximate para-
metric method was suggested to solve this (nonself-similar) problem. The method uses a
cubic trinomial for the temperature profile. Here we examine an analogous problem of a
power filtration law [5] for arbitrary temperature-dependence of the non-Newtonian viscosity
and for more general heat-transfer boundary conditions at the surface of the filler. We
also use a parametric method, but with a different representation of the temperature pro-
file, which allows us to obtain the solution in a compact form suitable for numerical compu-
tations. The problem is solved analytically in the particular cases of small and large pres-
sure gradients, and also for weak temperature dependence of the non-Newtonian viscosity.
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Fig., 1. Model of the impregnating ap-
paratus.

Figure 1 shows a model of a continuous-impregnation apparatus. The filler, in the form
of a thin layer, is heated in chamber I to a temperature T, at a pressure p, and drawn with
a constant velocity u into chamber II, which is filled with a binder at temperature Tf < T,
and pressure pf > py. At each point of the impregnated part of the filler in region III,
both phases are assumed to be at the same temperature, and the velocity of the binder along
the x-axis coincides with the drawing velocity. Under these conditions, the equation for
thermal conductivity takes the form [1]

00 a0 020
U— KUy — = @
Ep -+ %0y 3 9 (1)
where
T — Tf _ prf . }\J’C

0 —

; K= ’ a
TO — Tf epsCy - (1 —_ 8) PsCs PsCs

From the continuity equation for an incompressible fluid, it follows that the impreg-
nation velocity vy depends only on x. It is related to the width § of region III by the
obvious kinematic equation

vy = — &l a8
! dx (2)
We will assume that the binder is a fluid with a power filtration law:
1 /op )”
vy =, 3
! q (6y (3)

in which the coefficient q (proportional to the non-Newtonian viscosity) is an arbitrary
decreasing function of temperature:

9=q£(0), £(O) =1 (4)

The temperature dependence of the exponent n is usually rather small. Thus, according
to [5], if pure vapor o0il is heated from 28°C to 38°C, q changes by 77%, but n by 28%. If
benzene with 827 resin is heated from 19°C to 26°C, q decreases by 377, but n by 15Z. Here
we will neglect the temperature-dependence of n.

For boundary conditions, we use

P O)=ps p, L—38=p,—p.,
1 o6 (5)

WLOZ—“EBJWJ%WMI—Q:L

The goal of this problem is to determine the working length L of the apparatus as a
function of the impregnation parameters and the physical characteristics of the filler and
binder.

If we use new independent variables
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5= 8(x), W=~ (L —)- (6)

gs. (1) and (3) take the form

a9 1 0%6
8 X ) = L0
a6 an ® on? (7)
wz_gﬁz 1 ( ap) 6]—” .
ea eaq on ;
Integrating these equations with respect to n from 0 to 1 yields
. df 1] 0d0 a0 )
&% Ff=1—ue[l—06(*% 0 — | == (6%, )—-—— (&%, 0,
Lo =1l — 8%, O 4 { G @ =S )J (8)
(D:.:g_ﬁ*l-n' (9)
n
Here
1 1 .,
-~ Joan, u=[foee an]’
0 0 (10)
6*:_6_’ Q_ (ps + p. — po)* )
! Saqfl"‘l
We express the function 8(&%, n) in the form
0 =10, + 0, (11)
where 6; satisfies the equation
096 +®(1]—%8)——~0 (12)
o
and the boundary conditions [5]:
1 (7 ) 1 ®
0 = —llexp|— —(Mm—ue2|d exp | — — (ne)? |},
1 al{bY pl > )] Nt p[ 5 ( )]}
(13)

m==jemﬂl—%;0r—xﬂﬂdn+-—i—expy———@@z]

The function 8, is defined such that it vanishes both boundaries along with its first
and second derivatives with respect to n; it also satisfies the integral equation derived
from [11]:

i 1

fﬂzdnzf—h, f1== j Bydn. (14)

i b
According to (12) and (13):

fi= 1= el —0,(5%, O)] 4 — [:?9~(5 1 — L, 0)} -
@ | dn on
1 [ 1 (15)
:1—— L ex _2 1___ 2 e ,__\9_ 2 .
mT%iwwﬂ 5 (1| ( ey e [ 5 )

These requirements are satisfied by the expression

6 = 140/ — f) w0 (1 — )" (16)
When (15) is considered, Eq. (8) takes the form

dﬁ*
from which it follows that
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1%
\fldﬁ* (18)

:6—*——0

because f and f; are bounded as &% - 0.

Thus chosen, 6 satisfies Eq. (8), conditions (5), and an additional boundary condition
for n = 1:

0%0 a0
o (1l —xne)-— = 0,

which follows from (7) and the last condition [5).
We integrate (2) with the conditions (9) and find the working length of the apparatus:
' l

L'=L;L% Ly =——,
af (1 + n)

(20)

' a
L* = (14 n) [ p6*7d8*, o0 = — .
5 lu

The function u(8%*) is bounded by values which correspond to isothermal impregnation for
T=Ty, and T = Tg:

(<<l (21)
u(8*) is determined by Egs. (10)-(18) after specifying the function {(8).

If the binder is an ordinary viscous fluid (n = 1) and h = «, we obtain the exact self-
similar solution [11:

8=0,(n), f =f, = const, @ = const,

1 I (22)
= 0)dn = const, L = .
B gé() 4 5o
We examine the case for arbitrary n under the condition ¢ ~ 1/hf <« 1.
To first order, we obtain
® 1
0, = 2Ll —n)(1—3xe+ n) + 1 —m),
1=+ n (1 —mn)( £+ 1) hm*( m)
(23)
i ® 1
=— 4 — (1 — 2ue .
b=y ) Shis

These expressions are valid in the interval 8§, £ 6% £ 1. TFor a small initial range &% < §,,
the function f, can be considered constant and equal to its initial value f,. According to

(15)

::J1 for nsgl,
fo [ 1 —ne for n>1. (24)
From the continuity condition f;(8§,) = f,, we obtain an equation to determine &,:
Q o 1
2fo— 1) 8 = 1— 2ue) 85 "+ — (25)
@fo J 120, ( )80 - 7
from which it follows
1
——— for n<2,
Rl (2fe— 1) <
8 = Q ! or n =2, (26)

£
12u + AL(l — 2ue)

Q \l/a—1)
) for n>9,
( 12p,
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Thus:
f= L (2f0 — 1) % — 2xg) v in o
9 0 "oy Snis* 5,

8 1
uzuo{l—zlon(2f0-— R

hDI—-

6*

35 (1 — 2xe) y (1 — v)] — hzré*{ L _-1_2107(1—&1?\)]},
0

09 = 2 811, o =Hl€”"(n)dn i
0 Ko s M0 ; »

(27)

1 1
= ———ue + —— [ §1/7(n) (2xe — ) ndn,
; e 0{ ndn

1
(et — 2 (1 — 2n dn,

I 8 \ 2
2—;‘1[1—(\F> ]for n

In— for p=2

and the coefficient L* takes the form

- 1
L* = po— (1 +m) Q1B —35 (1 —n) (1 — 2xe) yv,] — G,

1 R ! 1
G= — (] 1 I
M( +n”%lﬁm +2my(m6 ”,

0 n (28)

{
! (1———2—6(2,"” for n=£2,
i2—n\ n

'V1=

1 .
In—l————l— for n= 9.
"

If the coefficient q has an exponential temperature dependence,

£ (8) = exp (— m0), ué’"=—”—[1~exp (—ﬁ)} :
m

(29)

Here

m:b(To—Tf)=1ngf—, (30)
1]

d b is a physical constant. For example, from data in [5] for pure vapor oil, we can take
= 0.15 1/deg, but for benzene with 82% resin, b = 0.06 1/deg.

In the limiting case Q - « and an arbitrary function £(6), we have
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Oqu%<m’f=ff=1~ua

=0, =
! 1 for n > xe, (31)

L* = p = [se 4 £/ (1) (1 — ug)]™

If m < 1, the temperature dependence of q is linear, { = mf, and the solution is writ-
ten in the form

1
p=1—mf, L* =1—m(l +n)jf6*"d5*. (32)
0
By substituting the value: of f from (27), we obtain L* for small @ and 1/h%:
L*:1—_2”1{1+21_4(1+n)9(1#2x8)[14(1—n)v1]+
lni 1 | (33)
n
(1= ln—}.
+ nhl \ n * 60)
This result can be obtained from Eq. (28) by noting that in this case
m m m
=1—=, p=—— (1 —2ue), y= .
o g0 b= gy 2 v =g

For arbitrary values of the parameters {, h%, and m, the problem can be solved by nu-
merical integration. As a first approximation to the function u(é&*), we take its average
value in the interval

iy = L+ E L (34)

We calculate the corresponding temperature distribution 6(j) from Egs. (11), (13), (15),
(16), and (18) and find the next approximation
1

po = [ [ /7 @) dn | (35)

0

etc., until the following approximation coincides with the previous one. Then we find L*
from (20). Table 1 shows the result of such a calculation for ke = 1/6, h = », and an ex-
ponential temperature dependence of the coefficient q. The computation process converges
quickly and we take H(2) for the final function u(8*), because it coincides with u(3) to six
significant figures.

Analysis of Table 1 shows that Eq. (28) can be used for © £ 1. Its relative error in-
creases with n and Q and reaches 3.6% for n = 2 and @ = 1. Equation (31) is correct for
Q > 10, and Eq. (33) is correct for m £ 0.5. The maximum error of the latter is 4% for m =
0.5.

The effect of heating the filler along the working length of the apparatus is charac-
terized by the dependence of L* on m, because according to (30) m determines the heating
temperature T, — T¢. With no heating, m = 0 and L* = 1. For m = 0.5 (g, = 0.61 qf), L*
decreases by 20-34%, but for m = 1 (g, = 0.37 qf), by 34-55%. The dependence of L* on Q is
much weaker. As n changes from 0.5 to 2, the decrease in L* does not exceed 11%, and chang-
ing @ from 0.01 to 100, L* decreases by 277; therefore, the effect of these parameters on
the length L depends basically on the multiplier L¢. According to the definition of Q, the

TABLE 1. Values of L* for ke = 1/6 and h = =

Q
n n
0,00 | o1 f 1 | 10 | 100
0,5 0,5 0,795 0,794 0,789 0,746 0,687
1 0,657 0,656 (0,646 0,573 0,503
1 0,5 0,787 0,786 0,774 0,708 0,669
1 0,632 0,630 0,607 0,500 0,462
1,5 0,5 0,783 0,780 0,756 0,687 0,666
1 0,622 0,616 0,570 0,471 0,452
2 0,5 0,781 0,773 0,736 0,678 0,664
1 0,616 0,601 0,536 0,459 0,448
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TABLE 2. Values of L* for xe = 1/6 and § < 1

hl
n m
50 | 100 I 150
0,5 0,5 0,036 0,022 0,016
1 0,060 0,036 0,026
1 0,5 0,031 0,018 0,013
1 0,051 0,030 0,021
1,5 0,5 0,024 0,014 0,010
1 0,039 0,023 0,017
2 0,5 0,017 0,009 0,007
1 0,038 0,022 0,016

multiplier Lf is proportional to the drawing velocity u and inversely proportional to the
pressure drop pf + pc — Po divided by the value 1 + n.

According to (28), external heat transfer decreases L* by the value G. This is caused
by a higher temperature in region III, because the fluid entering the filler now has a tem-
perature higher than Tg¢. As can be seen from Table 2, the magnitude of G increases with
increasing m and decreases with increasing n and Q.

NOTATION

pf,s and cf g are the density and heat capacity of the binder and the filler; e is the
porosity; A is the thermal conductivity; h is the heat transfer coefficient; p, and pf are
the pressures in the pores of the filler and in the fluid at temperatures T, and Tf, respec-
tively; pc is the capillary pressure; v, is the impregnation rate; u and 2% are the drawing
rate and the thickness of the filler; L is the working length of the impregnating apparatus.
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