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IMPREGNATING A HEATED FILLER WITH A NON-NEWTONIAN 

FLUID 

L. Ya. Kosachevskii', E. A. Kosachevskaya, 
and L. S. Syui 

UDC 532.546 

An approximate parametric method is used to solve the planar temperature-depen- 
dent problem of continuously impregnating a heated filler with a fluid that has 
a power-law non-Newtonian viscosity. 

Many composite materials are made by impregnating porous materials (fillers) with vari- 
ous fluids (binders), which than are polymerized or crystallized into a solid. The most 
convenient method to accelerate this process is to preheat the filler, which significantly 
reduces the viscosity of the binder during the impregnation. Here the fluid is held at a 
high temperature for only a short time, with no danger of thermal decomposition. An exact 
self-similar solution has been obtained [i] to the problem of using an ordinary viscous 
fluid for continuously impregnating a heated layer, which is drawn through a heated chamber. 
Because binders used in practice (resins and polymer melts) have more complex rheological 
properties, whose permeability differs from Darcy's law, the problem has been generalized 
[2, 3] to viscoplastic binders. The permeability is described by a generalized Darcy's law 
[4] for a linear temperature dependence of the rheological properties. An approximate para- 
metric method was suggested to solve this (nonself-similar) problem. The method uses a 
cubic trinomial for the temperature profile. Here we examine an analogous problem of a 
power filtration law [5] for arbitrary temperature-dependence of the non-Newtonian viscosity 
and for more general heat-transfer boundary conditions at the surface of the filler. We 
also use a parametric method, but with a different representation of the temperature pro- 
file, which allows us to obtain the solution in a compact form suitable for numerical compu- 
tations. The problem is solved analytically in the particular cases of small and large pres- 
sure gradients, and also for weak temperature dependence of the non-Newtonian viscosity. 
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Fig. I. Model of the impregnating ap- 
paratus. 

Figure 1 shows a model of a continuous-impregnation apparatus. The filler, in the form 
of a thin layer, is heated in chamber I to a temperature T o at a pressure P0 and drawn with 
a constant velocity u into chamber II, which is filled with a binder at temperature Tf < T O 
and pressure pf ~ P0. At each point of the impregnated part of the filler in region III, 
both phases are assumed to be at the same temperature, and the velocity of the binder along 
the x-axis coincides with the drawing velocity. 
thermal conductivity takes the form [I] 

O0 O0 

Ox 

where 

Under these conditions, the equation for 

0~0 
= a  , ( 1 )  

Oy Oy ~ 

0 T -- T I pie1 ;~• 
�9 ;4 - - - -  ; ~ - - - -  - -  

To - -  Ts ' ~9fcf -k (1 - -  J 9~G Or@ 

From the continuity equation for an incompressible fluid, it follows that the impreg- 
nation velocity Vy depends only on x. It is related to the width 6 of region III by the 
obvious kinematic equation 

d6 
v u = - - a u  dx .... ( 2 )  

We will assume that the binder is a fluid with a power filtration law: 

1 ( 0 '  F V~ = -- -- (3) q \ay]" 

in which the coefficient q (proportional to the non-Newtonian viscosity) is an arbitrary 
decreasing function of temperature: 

q = qsC(O), C(O) = 1. ( 4 )  

The t e m p e r a t u r e  d e p e n d e n c e  o f  t h e  e x p o n e n t  n i s  u s u a l l y  r a t h e r  s m a l l .  T h u s ,  a c c o r d i n g  
t o  [ 5 ] ,  i f  p u r e  v a p o r  o l l  i s  h e a t e d  f r o m  28~ t o  38~  q c h a n g e s  by 77%, b u t  n by  28%. I f  
benzene with 82% resin is heated from 19~ to 26~ q decreases by 37%, but n by 15%. Here 
we will neglect the temperature-dependence of n. 

For boundary conditions, we use 

p (x, l) = Pl, P (x, l - -  6) = Po - -  P~, 

1 O 0  
o (x, 0 

h Oy 
(x, O, o (x, f -  a ) =  1. 

The goal of this problem is to determine the working length L of the apparatus as a 
function of the impregnation parameters and the physical characteristics of the filler and 
binder. 

(5) 

If we use new independent variables 
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Eqs. (i) and (3) take the form 

Here 

1 
8 = 8 (x),  n = - - c  (l -- y ) ,  

0 

00 00 1 0~0 
8 -- (~ -- ~) - , 

a6 0q o~ o~l 2 

vy6 1 ( 0 ~ ) " 8 , _ .  
( I ) ~  - -  ,- ~ - -  . 

ea eaq 

I n t e g r a t i n g  t h e s e  e q u a t i o n s  w i t h  r e s p e c t  t o  ~ f rom 0 t o  1 y i e l d s  

a--~. + f = 1 - -  x~ [1 - -  e (8. ,  o)1 -~-n (~*' o) , 

-q 6 , 1 _ .  ( 0  ~ - -  

F 

1 l 

0 0 

6* -- 6 ~ (P,,' --[- Pc -- Po)n 
l eaq/"-~ 

We express the function e(6*, q) in the form 

(6 )  

where @i satisfies the equation 

and the boundary conditions [5]: 

(7) 

(8) 

(9) 

(10)  

0 ---- 01 -}- 0~, (11) 

020 + ~(~1 xe) O0 0 (12)  
O~/2 &q 

ol = exp ~ - -  (n - -  ~)~  dn + - -  , 
~ 1  t 0  

a l = ( e x p  - -  ( n - - •  2 d n §  �9 
0 

The function 62 is defined such that it vanishes both boundaries along with its first 
and second derivatives with respect to N; it also satisfies the integral equation derived 
from [ii]: 

I 1 

f %dn = f - - h ,  f l  = .i' %an. (14) 
0 

According to (12) and (13) :  

fl---- 1 - -xe [1- -01(8" ,  0)]4- 1 [ 001 001 ] , - ~ [ - ~ ( 8 " ,  1) - - -~1(8",  O)j = 

( 1 5 )  

--al [ ~ exp - -  ( 1 - - •  2 - -  - -  hlS* exp - -~ - ( •  . 

T h e s e  r e q u i r e m e n t s  a r e  s a t i s f i e d  by t h e  e x p r e s s i o n  

02 = 140 (f - -  f0 n ~ ( 1 - -  ~1) -~. ( 16 ) 

When (15) is considered, Eq. (8) takes the form 

8* df + f = f l ,  ( 1 7 )  
d6* 

from which it follows that 
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: --  f~d6* (18) 

because f and fz are bounded as 6" + O. 

Thus chosen, O satisfies Eq. (8), 
for ~ = i: 

a~0 

aN ~ 

conditions (5), and an additional boundary condition 

- - +  ~ ( 1  - -  •  = 0, ( 1 9 )  
a n  

which follows from (7) and the last condition [5). 

We integrate (2) with the conditions (9) and find the working length of the apparatus: 

l 
L~ LIL* , Ls --- 

~Q(1 + n) 
(20)  

l 
L* ---- (l + n) [~6*nd~ *, ~ a 

Iu 

The f u n c t i o n  g ( 6 * )  i s  bounded by v a l u e s  which  c o r r e s p o n d  t o  i s o t h e r m a l  i m p r e g n a t i o n  f o r  
T = T o and T = Tf :  

~ ( I ) - ~  ~ 1 ( 2 1 )  

~ ( 6 " )  i s  d e t e r m i n e d  by Eqs .  ( 1 0 ) - ( 1 8 )  a f t e r  s p e c i f y i n g  t h e  f u n c t i o n  ~ ( 0 ) .  

I f  t h e  b i n d e r  i s  an o r d i n a r y  v i s c o u s  f l u i d  (n = 1) and h = ~,  we o b t a i n  t h e  e x a c t  s e l f -  
s i m i l a r  s o l u t i o n  [1] : 

0 = 01 (h), f =/:1 = const, ~ = const, 

( 2 2 )  
= [ ~(0)dN = const L = 

0 

We examine the case for arbitrary n under the condition ~ ~ i/hs << i. 

To first order, we obtain 

01 = n + -6- n (1 - -  N)(1 - -  3• + ~) + ( 1 - - %  
hlS* 

1 (o 0 1 
h = y + - - ~  (1 - 2• + 2 h 1 8 .  " 

(23)  

These expressions are valid in the interval 6 o < 6* <- i. For a small initial range 6" < 60, 
the function fl can be considered constant and equal to its initial value f0. According to 
(15) 

[1 for . q ~  1, 
fO = '[ 1 - - U S  f o r  / 2 >  1. (24)  

From t h e  c o n t i n u i t y  c o n d i t i o n  f z ( 6 0 )  = f 0 ,  we o b t a i n  an e q u a t i o n  t o  d e t e r m i n e  60: 

(2f0- -  1 ) 8 o = -  a (1_2•  1 , (25)  
12~0 hl 

from which it follows 

8 0 

1 
for n < 2,  

hl (2fo - -  1) 

I for n = 2, 
0 1 

1--~o + hl(1--2•  

(1@~0)  ' /(n-l,  for / 2 > 2 .  

(26)  
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Thus: 
1 1 8o COo 

= ~ -  + y (2Io - 1) 7 ;  + - - ~  (1 - 2 ~ )  

6o 
/X=No 1--210n(2fo--  1)78, 

- -  35 ( 1 - -  2• 7 (1 - -  v)] - -  - -  

- - I n  - - ,  
2h/8" 8o 

1 
o~on ill - -  

2 

( hlS*  ~ i l n  1 - - 2 1 0 '  7 

r176 = - -  No -"  ~i In (rl) d q  n , 
No "o 

1 

[J = "--3-1 __ XE .@ N1---]'~ .f ~l/n(ll) ( 2 ~ g - -  3]) ~]d~], 

1 i ~l/n (~1) nz (1 - -  rl)z (1 -- 2 n) dn,  
- -  N l~ i5 

2 - - n  1 - -  If~ n=/=2,  

v-----J 
1 
I 8" 

-- f o r  /~ = 2 In 6o 

80 ] ' 

(27) 

and the coefficient L* takes the form 

I 
L* = No 7 - n ( 1  + n) Q [~ - -  35  ( 1 - -  n) (1 - -  2•  ?v~l - -  O, 

Here 

= ( )] 1 ( l + n ) y , o  - - - - 1 + 2 1 0 7  In 1 1 
hl  N 1In 2) o n ' 

I 1 - -  - -  f o r  n =~ 2,  
] 2 - - n  n 

I 1 1 
for lZ = 2. In 6o 2 

If the coefficient q has an exponential temperature dependence, 

m 

( __1 B 1 - - 2 •  1 
13---- 2 6 

7 = 2  
m /  t 

--~ N~/n 1 - 1. 

( 2 8 )  

(29) 

m = b (To -- Ts) = In q_L , (30) 
q0 

and b is a physical constant. For example, from data in [5] for pure vapor oil, we can take 
b = 0.15 i/deg, but for benzene with 82% resin, b = 0.06 i/deg. 

In the limiting case ~ + ~ and an arbitrary function ~(0), we have 
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0 = 0 1 = { ~  f~  ~ < ~ 8 '  f = f l =  1--x8, 
for  1] ~> zs, (31) 

L* = ~ = [• @ ~l/n (1) (1 - -  • 

If m << 1, the temperature dependence of q is linear, ~ = me, and the solution is writ- 
ten in the form 

I 

1 - - m r ,  L* = l - - m ( 1  +n)~fS*~d5 *. (32) 
0 

By substituting the value! of f from (27), we obtain L* for small ~ and i/hs 

L * =  I - - 2 - /  1+-4S-A (l + n) Q ( 1 - -  2• [ 1 - -  (l - -  n) %] + 

T 
T h i s  r e s u l t  can  be o b t a i n e d  f rom Eq. (28)  by n o t i n g  t h a t  i n  t h i s  c a s e  

~ 0  1 m m m = - - - - ,  ~ =  - -  ( 1 - -  2ze), ? =  
2 12n 420n 

For  a r b i t r a r y  v a l u e s  o f  t h e  p a r a m e t e r s  a ,  hs  and m, t h e  p r o b l e m  can  be s o l v e d  by nu -  
m e r i c a l  integration. As a first approximation to the function ~(d*), we take its average 
value in the interval 

i 
~(1) = ~ [1 + ; (1)l. (34 )  

We c a l c u l a t e  t h e  c o r r e s p o n d i n g  t e m p e r a t u r e  d i s t r i b u t i o n  8(1 ) f rom Eqs .  ( 1 1 ) ,  ( 1 3 ) ,  ( 1 5 ) ,  
( 1 6 ) ,  and (18)  and f i n d  t h e  n e x t  a p p r o x i m a t i o n  

1 

O 

etc., until the following approximation coincides with the previous one. Then we find L* 
from (20). Table 1 shows the result of such a calculation for <~ = 1/6, h = ~, and an ex- 
ponential temperature dependence of the coefficient q. The computation process converges 
quickly and we take ~(2) for the final function D(6*), because it coincides with ~(3) to six 
significant figures. 

Analysis of Table 1 shows that Eq. (28) can be used for ~ 5 i. Its relative error in- 
creases with n and ~ and reaches 3.6% for n = 2 and ~ = i. Equation (31) is correct for 

> i0, and Eq. (33) is correct for m 5 0.5. The maximum error of the latter is 4% for m = 
0.5. 

The effect of heating the filler along the working length of the apparatus is charac- 
terized by the dependence of L* on m, because according to (30) m determines the heating 
temperature To - Tf. With no heating, m = 0 and L* = I. For m = 0.5 (q0 = 0.61 qf), L* 
decreases by 20-34%, but for m = 1 (q0 = 0.37 qf), by 34-55%. The dependence of L* on ~ is 
much weaker. As n changes from 0.5 to 2, the decrease in L* does not exceed 11%, and chang- 
ing ~ from 0.01 to i00, L* decreases by 27%; therefore, the effect of these parameters on 
the length L depends basically on the multiplier Lf. According to the definition of ~, the 

TABLE I. Values of L* for <g = i/6 and h = 

/2 tTZ 

0,5 

1 

1,5 

2 

0,5 
1 
0,5 
1 
0,5 
1 
0,~ 
1 

0 , 0 1  

0,795 
0,657 
0,787 
0,632 
0,783 
0,622 
0,781 
0,616 

0 ,1  

0,794 
0,656 
0,786 
0,630 
0,780 
0,616 
0,773 
0,601 

0,789 
0,646 
0,774 
0,607 
0,756 
0,570 
0,736 
0,536 

10 

0,746 
O, 573 
O, 708 
0,500 
O, 687 
0,471 
O, 678 
0,459 

1 0 0  

0,687 
0,503 
0,669 
O, 462 
0,666 
0,452 
0,664 
0,448 
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TABLE 2. Values of L* for ~E = 1/6 and ~ < 1 

0,5 

1 

1,5 

2 

0,5 
1 
0,5 
1 
0,5 
1 
0,5 
1 

50 

0,036 
0,060 
0,031 
0,051 
0,024 
0,039 
0,017 
0,038 

h! 

100 

0,022 
0,036 
0,018 
0,030 
0,014 
0,023 
0,009 
0,022 

150 

0,016 
0,026 
0,013 
0,021 
0,010 
0,017 
0,007 
0,016 

multiplier Lf is proportional to the drawing velocity u and inversely proportional to the 
pressure drop pf + Pc - P0 divided by the value 1 + n. 

According to (28), external heat transfer decreases L* by the value G. This is caused 
by a higher temperature in region III, because the fluid entering the filler now has a tem- 
perature higher than Tf. As can be seen from Table 2, the magnitude of G increases with 
increasing m and decreases with increasing n and ~. 

NOTATION 

Pf,s and cf, s are the density and heat capacity of the binder and the filler; e is the 
porosity; ~ is the thermal conductivity; h is the heat transfer coefficient; P0 and pf are 
the pressures in the pores of the filler and in the fluid at temperatures T o and Tf, respec- 
tively; Pc is the capillary pressure; Vy is the impregnation rate; u and 2s are the drawing 
rate and the thickness of the filler; L is the working length of the impregnating apparatus. 
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